$315,000 awarded to Jeehye Park, an assistant professor at Hospital for Sick Children, Toronto, ON.

Dr. Park has made significant contributions to neurodegenerative disease research since the beginning of her career. During her PhD work in South Korea with Dr. Jongkyeong Chung, Dr. Park discovered a key connection between two Parkinson’s disease pathways that had a major impact on the field and was published in the elite scientific journal Nature. She subsequently pursued postdoctoral research at Baylor College of Medicine under the guidance of Dr. Huda Zoghbi, where Dr. Park helped to create a network of laboratories with expertise across different animal models to screen for treatments for the neurodegenerative disease spinocerebellar ataxia 1, which led to yet another paper in Nature. Her research then led her to study RNA binding proteins (RBP), where she not only developed a new tool to study them, but became interested in the multiple RBPs that are linked to ALS.

In her lab, Dr. Park will examine how abnormalities in RBPs – in particular, one called Matrin 3 (MATR3) – can lead to ALS. MATR3 was discovered to be a genetic cause of ALS in 2014 and has yet to be studied in any detail. By creating the first-ever cell, fruit fly and mouse models of MATR3, Dr. Park will learn both about the functions of MATR3 and how mutations can confer motor neuron degeneration. Dr. Park will then search for other genes that may increase or reduce mutant MATR3 toxicity in both human cells and fruit fly models to find potential targets for treatment, and follow up with the most promising candidates being tested in the new MATR3 mouse models with an aim to eventually move them forward translationally into the clinic.

As a member of the Canadian ALS research community, Dr. Park will be able to integrate the knowledge gained about MATR3 with the work of others here and around the world as yet another puzzle piece in understanding ALS. By focusing the early stages of her independent career on a less understood ALS mechanism, she intends to find connections between MATR3 and more prominently studied RBPs like TDP-43 and FUS to ultimately unravel key mechanisms in the development of ALS, as well as new targets to treat the disease.

This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.